

HASSLACHER BAUBUCHE

HIGHEST LOAD CAPACITY AND STIFFNESS

PRODUCT INFORMATION HASSLACHER BAUBUCHE

ADVANTAGES

- Slimmer dimensions for girders and beams
- Higher mechanical properties than spruce
- Volume savings in construction
- Novel, aesthetically appealing appearance

AREAS OF USE

- Beams and support structures
- Engineered timber structures with large spans and high loads
- Tensile and compressive stressed components in wooden trusses
- Highly loaded, slender supports

CROSS-SECTIONS

Heights: 80 mm to 2,500 mm Widths: 50 mm to 600 mm

Extension up to 1,200 mm through block bonding.

STRENGTH CLASS

GL75 according to ETA-18/1018

WOOD SPECIES

European beech

MOISTURE CONTENT

 $6\% \pm 2\%$

SERVICE CLASSES (EN 1995-1-1)

Service class 1 heated indoor Service class 2 roofed outdoor

RESISTANCE TO FIRE (EN 1995-1-2)

 $\beta_0 = 0.65 \text{ mm/min}$ $\beta_n = 0.70 \text{ mm/min}$

MECHANICAL PROPERTIES FOR DESIGNING HASSLACHER BAUBUCHE ACCORDING TO ETA-18/1018

Strength classes			
Bending strength	$f_{m,g,k}$	$k_{\rm h,m} = (600/h)^{0.1}$	75 N/mm²
Tensile strength	$f_{t,0,g,k}$	$k_{\rm h,t} = (600/h)^{0.1}$	60 N/mm²
	$f_{ m t,90,g,k}$		0.6 N/mm²
Compressive strength	$f_{\mathrm{c,0,g,k}}$		SC 1: 59.4 N/mm ² SC 2: 49.5 N/mm ²
	$f_{c,90,g,k}$		SC 1: 14.8 N/mm ² SC 2: 12.3 N/mm ²
Shear strength	$f_{ m v,g,k}$	$\mathbf{k}_{\rm h,v} = (600/\rm h)^{0.13}$	4.5 N/mm²
Modulus of elasticity	$E_{ m 0,g,mean}$		16,800 N/mm ²
	E _{0,g,05}		15,300 N/mm²
	$E_{ m 90,g,mean}$		470 N/mm²
	E _{90,g,05}		400 N/mm2
Shear modulus	$G_{ m g,mean}$		850 N/mm²
	G_{05}		760 N/mm²
Density	$ ho_{\sf g,k}$		800 kg/m³
	$ ho_{ extsf{g,mean}}$		730 kg/m³

For further information about the product and its use, along with the mechanical, timber engineering and physical properties of this construction material, consult European Technical Assessment ETA-18/1018 or www.pollmeier.com.

Tan Care

As a result of the rounded shape of the building's supporting structure and the complex design, the architects and structural engineers faced great challenges, which were ultimately solved by using beams made of LVL.

The roof was constructed in monopitch form using beams made of spruce glulam and HASSLACHER BauBuche. The use of HASSLACHER BauBuche made it possible to ensure a significantly reduced construction height of the beams. This height reduction was necessary for the beams not to collide with the insulation layer; using HASSLACHER BauBuche allowed the design to be implemented according to plan. The special structural features are that the support structure has two circular skylights, each with a diameter of 15 m.

PROJECT INFO EDEKA GÖTTINGEN		
Location:	Göttingen in Germany	
Planner:	Feldmann Architekten GmbH	
Structural engineering and design:	HESS TIMBER GmbH	
Client:	Edeka Hessenring eG	
Constructed:	2015	
Products used:	spruce glulam, HASSLACHER BauBuche	

From wood to wonders.

HASSLACHER group

Feistritz 1 | 9751 Sachsenburg | Austria T +43 4769 22 49-0 | F +43 4769 22 49-129 info@hasslacher.com | hasslacher.com

HNT0106_EN_201906

UPPERCUT.at | Pictures: © Rensteph Thompson, Pollmeier Massivholz GmbH & Co. KG